Nikolas Schrod

  • Citations Per Year
Learn More
Cryo-electron tomography allows three-dimensional visualization of frozen-hydrated, vitrified biological material at molecular resolution. Here, we summarize the most important sample preparation methods and technical aspects relevant for cryo-electron tomography, as well as its recent biological applications from isolated macromolecular complexes to entire(More)
Despite great progress in the identification and characterization of the key molecular players in neuronal function, remarkably little is known about their supramolecular organization. Cryo-electron tomography (cryo-ET), providing three-dimensional views of the molecular components of the cell in their native, fully hydrated environment, is uniquely(More)
Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure(More)
The cleft is an integral part of synapses, yet its macromolecular organization remains unclear. We show here that the cleft of excitatory synapses exhibits a distinct density profile as measured by cryoelectron tomography (cryo-ET). Aiming for molecular insights, we analyzed the synapse-organizing proteins Synaptic Cell Adhesion Molecule 1 (SynCAM 1) and(More)
Synucleins (α, β, γ-synuclein) are a family of abundant presynaptic proteins. α-Synuclein is causally linked to the pathogenesis of Parkinson's disease (PD). In an effort to define their physiological and pathological function or functions, we investigated the effects of deleting synucleins and overexpressing α-synuclein PD mutations, in mice, on synapse(More)
  • 1