Nikolaos Tsamandouras

Learn More
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate(More)
The aim of this work was to develop a joint population pharmacokinetic model for simvastatin (SV) and its active metabolite, simvastatin acid (SVA), that incorporates the effects of multiple genetic polymorphisms and clinical/demographic characteristics. SV/SVA plasma concentrations, demographic/clinical data, and genotypes for 18 genetic variants were(More)
To investigate the effect of OATP1B1 genotype as a covariate on repaglinide pharmacokinetics and drug-drug interaction (DDIs) risk using a reduced physiologically-based pharmacokinetic (PBPK) model. Twenty nine mean plasma concentration-time profiles for SLCO1B1 c.521T>C were used to estimate hepatic uptake clearance (CLuptake) in different genotype groups(More)
The utilisation of physiologically-based pharmacokinetic models for the analysis of population data is an approach with progressively increasing impact. However, as we move from empirical to complex mechanistic model structures, incorporation of stochastic variability in model parameters can be challenging due to the physiological constraints that may(More)
To develop a population physiologically-based pharmacokinetic (PBPK) model for simvastatin (SV) and its active metabolite, simvastatin acid (SVA), that allows extrapolation and prediction of their concentration profiles in liver (efficacy) and muscle (toxicity). SV/SVA plasma concentrations (34 healthy volunteers) were simultaneously analysed with NONMEM(More)
BACKGROUND Cough in asthmatic patients is a common and troublesome symptom. It is generally assumed coughing occurs as a consequence of bronchial hyperresponsiveness and inflammation, but the possibility that airway nerves are dysfunctional has not been fully explored. OBJECTIVES We sought to investigate capsaicin-evoked cough responses in a group of(More)
In this work, we first describe the population variability in hepatic drug metabolism using cryopreserved hepatocytes from five different donors cultured in a perfused three-dimensional human liver microphysiological system, and then show how the resulting data can be integrated with a modeling and simulation framework to accomplish in vitro-in vivo(More)
This article has not been copyedited and formatted. The final version may differ from this version. Abstract In this work, we first describe the population variability in hepatic drug metabolism using cryopreserved hepatocytes from 5 different donors cultured in a perfused 3D human liver microphysiological system and then show how the resulting data can be(More)
Whole-body physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development for their ability to predict drug concentrations in clinically relevant tissues and to extrapolate across species, experimental conditions and sub-populations. A whole-body PBPK model can be fitted to clinical data using a Bayesian population approach.(More)
Investigation of the pharmacokinetics (PK) of a compound is of significant importance during the early stages of drug development, and therefore several in vitro systems are routinely employed for this purpose. However, the need for more physiologically realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D cultures, also(More)