Learn More
OBJECTIVES The aim of this study was to assess the cross-sectional area (CSA) of both paraspinal and psoas muscles in patients with unilateral back pain using MRI and to correlate it with outcome measures. METHODS 40 patients, all with informed consent, with a minimum of 3 months of unilateral back pain with or without sciatica and one-level disc disease(More)
The mechanical strength properties of lumbar spine vertebrae are of great importance in a wide range of applications. Herein, through nanoindentations and appropriate evaluation of the corresponding results, trabecular bone struts stress-strain characteristics can be determined. In the frame of the present paper, an L2 fresh cadaveric vertebra, from which(More)
BACKGROUND CONTEXT With an increasing prevalence of low back pain, physicians strive to optimize the treatment of patients with degenerated motion segments. There exists a consensus in literature that osteoporotic patients exhibit nonphysiologic loading patterns, while degenerated intervertebral discs (IVDs) are also believed to alter spine biomechanics. (More)
OBJECTIVE The objective of our study was to compare MDCT angiography protocols used in patients with acute chest pain caused by vascular, nonvascular, and cardiac abnormalities. SUBJECTS AND METHODS In four groups of 20 patients with chest pain each, four MDCT protocols were used based on monitoring vascular attenuation: pulmonary embolism (150 H at(More)
Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures.(More)
During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone-implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these(More)
BACKGROUND With an increasing prevalence of osteoporosis, physicians have to optimize treatment of relevant vertebral compression fractures, which have significant impact on the quality of life in the elder population. Retrospective clinical studies suggest that kyphoplasty, despite being a procedure with promising potential, may be related to an increased(More)
The decrease of bone mineral density (BMD) is a multifactorial bone pathology, commonly referred to as osteoporosis. The subsequent decline of the bone's micro-structural characteristics renders the human skeletal system, and especially the hip, susceptible to fragility fractures. This study represents a systematic attempt to correlate BMD spectrums to the(More)
Recent advances in Computer Aided Design and Manufacturing techniques (CAD/CAM) have facilitated the rapid and precise construction of customized implants used for craniofacial reconstruction. Data of the patients' trauma, acquired through Computer Topographies (CT), provide sufficient information with regard to the defect contour profile, thus allowing a(More)