Nikolaos Kalfagiannis

Learn More
Transition-metal nitrides (TMN) have exceptional stability, which underlies their use in various applications. Here, we study the role of N point defects on the stability of prototype TMNs using first-principles calculations. We find that distinct regimes for TMN changes relate to specific atomic-scale mechanisms, namely, diffusion of N interstitials(More)
There is increasing interest in developing novel coatings to enhance the biocompatibility of medical implants. A key issue in biocompatibility research is platelet activation and aggregation on the biomaterials' surface. Stoichiometric and nonstoichiometric titanium nitride (TiN(x)) films were developed by sputtering as case study materials, for probing(More)
BACKGROUND Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT)(More)
  • 1