Nikolaos G. Fytas

  • Citations Per Year
Learn More
We apply the recently developed critical minimum-energy subspace scheme for the investigation of the random-field Ising model. We point out that this method is well suited for the study of this model. The density of states is obtained via the Wang-Landau and broad histogram methods in a unified implementation by employing the N-fold version of the(More)
We use a standard bead-spring model and molecular dynamics simulations to study the static properties of symmetric linear multiblock copolymer chains and their blocks under poor solvent conditions in a dilute solution from the regime close to theta conditions, where the chains adopt a coil-like formation, to the poorer solvent regime where the chains(More)
Conformations of a single-component bottle-brush polymer with a fully flexible backbone under poor solvent conditions are studied by molecular dynamics simulations, using a coarse-grained bead-spring model with side chains of up to N = 40 effective monomers. By variation of the solvent quality and the grafting density σ with which side chains are grafted(More)
We study the pure and random-bond versions of the square lattice ferromagnetic Blume-Capel model, in both the first-order and second-order phase transition regimes of the pure model. Phase transition temperatures, thermal and magnetic critical exponents are determined for lattice sizes in the range L=20-100 via a sophisticated two-stage numerical strategy(More)
We investigate the effects of quenched bond randomness on the critical properties of the two-dimensional ferromagnetic Ising model embedded in a triangular lattice. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method. In the first part of our study, we present the finite-size scaling behavior of(More)
The effects of bond randomness on the ground-state structure, phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel (BC) model are discussed. The calculation of ground states at strong disorder and large values of the crystal field is carried out by mapping the system onto a network and we search for a minimum cut by a maximum(More)
The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the second-order phase-transition regime of(More)
Both the square and triangular Ising antiferromagnetic systems with next-nearest neighbour interactions are studied by a new efficient entropic scheme. Using the energy distribution and order parameter’s fourth order cumulant it is illustrated that the two models behave quite differently. For the square model we establish strong numerical evidence showing a(More)
The effects of bond randomness on the universality aspects of a two-dimensional (d = 2) Blume-Capel model embedded in the triangular lattice are discussed. The system is studied numerically in both its first- and second-order phase-transition regimes by a comprehensive finite-size scaling analysis for a particularly suitable value of the disorder strength.(More)