Nikolaos E Labrou

Learn More
Bacterial L-asparaginases (L-ASNases) catalyze the conversion of L-asparagine to L-aspartate and ammonia. In the present work, we report the cloning and expression of L-asparaginase from Erwinia chrysanthemi 3937 (ErL-ASNase) in Escherichia coli BL21(DE3)pLysS. The enzyme was purified to homogeneity in a single-step procedure involving cation exchange(More)
Glutathione transferases (GSTs) from the tau class (GSTU) are unique to plants and have important roles in stress tolerance and the detoxification of herbicides in crops and weeds. A fluorodifen-induced GST isoezyme (GmGSTU4-4) belonging to the tau class was purified from Glycine max by affinity chromatography. This isoenzyme was cloned and expressed in(More)
The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by(More)
Bacterial L-asparaginases (E.C. 3.5.1.1) have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia. L-asparaginase from Erwinia carotovora NCYC 1526 (ErA) was cloned and expressed in E. coli. The enzyme was purified to homogeneity by a two-step procedure comprising cation-exchange chromatography and affinity(More)
Formate dehydrogenase from Candida boidinii (CboFDH) catalyses the oxidation of formate anion to carbon dioxide with concomitant reduction of NAD(+) to NADH. CboFDH is highly specific to NAD(+) and virtually fails to catalyze the reaction with NADP(+). Based on structural information for CboFDH, the loop region between beta-sheet 7 and alpha-helix 10 in the(More)
Cytosolic GSTs (glutathione transferases) are a multifunctional group of enzymes widely distributed in Nature and involved in cellular detoxification processes. The three-dimensional structure of GmGSTU4-4 (Glycine max GST Tau 4-4) complexed with GSH was determined by the molecular replacement method at 2.7 A (1 A=0.1 nm) resolution. The bound GSH is(More)
Affinity chromatography on immobilized Protein A is the current method of choice for the purification of monoclonal antibodies (mAbs). Despite its widespread use it presents certain drawbacks, such as ligand instability, leaching, toxicity and high cost. In the present work, we report a new procedure for the purification of two human monoclonal anti-HIV(More)
Glutathione transferases (GSTs) represent a major group of detoxification enzymes. All plants possess multiple cytosolic GSTs, each of which displays distinct catalytic as well as non-catalytic binding properties. The progress made in recent years in the fields of genomics, proteomics and protein crystallography of GSTs, coupled with studies on their(More)
The plant tau class glutathione transferases (GSTs) play important roles in biotic and abiotic stress tolerance in crops and weeds. In this study, we systematically examined the catalytic and structural features of a GST isoenzyme from Glycine max (GmGSTU10-10). GmGSTU10-10 is a unique isoenzyme in soybean that is specifically expressed in response to(More)
L-asparaginase (EC 3.5.1.1, L-ASNase) catalyses the hydrolysis of l-Asn, producing L-Asp and ammonia. This enzyme is an anti-neoplastic agent; it is used extensively in the chemotherapy of acute lymphoblastic leukaemia. In this study, we describe the use of in vitro directed evolution to create a new enzyme variant with improved thermal stability. A library(More)