Nikolai M. Chapochnikov

Learn More
Cochlear inner hair cells (IHCs) transmit acoustic information to spiral ganglion neurons through ribbon synapses. Here we have used morphological and physiological techniques to ask whether synaptic mechanisms differ along the tonotopic axis and within IHCs in the mouse cochlea. We show that the number of ribbon synapses per IHC peaks where the cochlea is(More)
Mammalian cochlear spiral ganglion neurons (SGNs) encode sound with microsecond precision. Spike triggering relies upon input from a single ribbon-type active zone of a presynaptic inner hair cell (IHC). Using patch-clamp recordings of rat SGN postsynaptic boutons innervating the modiolar face of IHCs from the cochlear apex, at room temperature, we studied(More)
The mechanisms underlying the large amplitudes and heterogeneity of excitatory postsynaptic currents (EPSCs) at inner hair cell (IHC) ribbon synapses are unknown. Based on electrophysiology, electron and superresolution light microscopy, and modeling, we propose that uniquantal exocytosis shaped by a dynamic fusion pore is a candidate neurotransmitter(More)
Address: 1InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the Brain, University of Göttingen, Germany, 2Bernstein Center for Computational Neuroscience, University of Göttingen, 37073, Germany, 3Department of Nonlinear Dynamics, Max-PlanckInstitute for Dynamics & Self-Organization, Göttingen, Germany, 4Department of(More)
Heterogeneity of neuronal responses is abundant in sensory systems. For example, spiral ganglion neurons (SGN), which are postsynaptic to mechanosensory inner hair cells (IHCs), show high variability in spontaneous and sound-driven discharge [1]. Recent experimental evidence implicates heterogeneity of the molecular organization of the IHC presynaptic(More)
  • 1