Nikolai K. Krivulin

Learn More
We consider a multidimensional extremal problem formulated in terms of tropical mathematics. The problem is to minimize a nonlinear objective function, which is defined on a finite-dimensional semimodule over an idempotent semifield, subject to linear inequality constraints. An efficient solution approach is developed which reduces the problem to that of(More)
Max-algebra models of tandem single-server queueing systems with both finite and infinite buffers are developed. The dynamics of each system is described by a linear vector state equation similar to those in the conventional linear systems theory, and it is determined by a transition matrix inherent in the system. The departure epochs of a customer from the(More)
We consider a constrained minimax single facility location problem on the plane with rectilinear distance. The feasible set of location points is restricted to rectangles with sides oriented at a 45 degrees angle to the axes of Cartesian coordinates. To solve the problem, an algebraic approach based on an extremal property of eigenvalues of irreducible(More)
Multidimensional minimax single facility location problems with Chebyshev distance are examined within the framework of idempotent algebra. A new algebraic solution based on an extremal property of the eigenvalues of irreducible matrices is given. The solution reduces both unconstrained and constrained location problems to evaluation of the eigenvalue and(More)
The problem of evaluation of Lyapunov exponent in queueing network analysis is considered based on models and methods of idem-potent algebra. General existence conditions for Lyapunov exponent to exist in generalized linear stochastic dynamic systems are given, and examples of evaluation of the exponent for systems with matrices of particular types are(More)