Learn More
MOTIVATION High-dimensional single-cell snapshot data are becoming widespread in the systems biology community, as a mean to understand biological processes at the cellular level. However, as temporal information is lost with such data, mathematical models have been limited to capture only static features of the underlying cellular mechanisms. RESULTS(More)
The identification of pathways pertinent to human diseases is critical for gaining a better understanding of their pathophysiology. Pathway knowledge in turn can provide disease marker information required for diagnosis, drug development and improved patient treatment. Psychiatric disorders including anxiety and depression are complex diseases and are(More)
Establishment of cell polarity--or symmetry breaking--relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that(More)
How can we automatically spot all outstanding observations in a data set? This question arises in a large variety of applications, e.g. in economy, biology and medicine. Existing approaches to outlier detection suffer from one or more of the following drawbacks: The results of many methods strongly depend on suitable parameter settings being very difficult(More)
Modern high-throughput methods allow the investigation of biological functions across multiple 'omics' levels. Levels include mRNA and protein expression profiling as well as additional knowledge on, for example, DNA methylation and microRNA regulation. The reason for this interest in multi-omics is that actual cellular responses to different conditions are(More)
INTRODUCTION Skeletal muscle cell differentiation is impaired by elevated levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α) with pathological significance in chronic diseases or inherited muscle disorders. Insulin like growth factor-1 (IGF1) positively regulates muscle cell differentiation. Both, TNF-α and IGF1 affect gene and microRNA(More)
Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and(More)
Osteosarcomas are aggressive bone tumours with a high degree of genetic heterogeneity, which has historically complicated driver gene discovery. Here we sequence exomes of 31 tumours and decipher their evolutionary landscape by inferring clonality of the individual mutation events. Exome findings are interpreted in the context of mutation and SNP array data(More)
Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we(More)
SUMMARY Decreasing costs of modern high-throughput experiments allow for the simultaneous analysis of altered gene activity on various molecular levels. However, these multi-omics approaches lead to a large amount of data, which is hard to interpret for a non-bioinformatician. Here, we present the remotely accessible multilevel ontology analysis (RAMONA).(More)