Learn More
BACKGROUND The embryonic stem cell (ESC) factor, SALL4, plays an essential role in both development and leukemogenesis. It is a unique gene that is involved in self-renewal in ESC and leukemic stem cell (LSC). METHODOLOGY/PRINCIPAL FINDINGS To understand the mechanism(s) of SALL4 function(s), we sought to identify SALL4-associated proteins by tandem mass(More)
Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate(More)
The embryonic stem (ES) cell gene SALL4 has recently been identified as a new target for cancer therapy, including leukemia. SALL4 is expressed in ES cells and during embryonic development, but is absent in most adult tissues. It is, however, aberrantly expressed in various solid tumors and hematologic malignancies such as myelodysplastic syndromes (MDS)(More)
Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/β-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a(More)
  • 1