Nikalesh Ippagunta

Learn More
The exquisite ability of the liver to regenerate is finite. Identification of mechanisms that limit regeneration after massive injury holds the key to expanding the limits of liver transplantation and salvaging livers and hosts overwhelmed by carcinoma and toxic insults. Receptor for advanced glycation endproducts (RAGE) is up-regulated in liver remnants(More)
Hepatic ischemia/reperfusion (I/R) injury associated with liver transplantation and hepatic resection is characterized by hepatocellular damage and a deleterious inflammatory response. In this study, we examined whether receptor for advanced glycation end product (RAGE) activation is linked to mechanisms accentuating inflammation on I/R in a murine model of(More)
The exquisite ability of the liver to regenerate is finite. Identification of mechanisms that limit regeneration after massive injury holds the key to expanding the limits of liver transplantation and salvaging livers and hosts overwhelmed by carcinoma and toxic insults. Receptor for advanced glycation endproducts (RAGE) is up-regulated in liver remnants(More)
The receptor for advanced glycation end-products (RAGE) is a cell surface receptor implicated in tumor cell proliferation and migration. We hypothesized that RAGE signaling impacts tumorigenesis and metastatic tumor growth in murine models of colorectal carcinoma. Tumorigenesis: Apc1638N/+ mice were crossed with Rage−/− mice in the C57BL/6 background to(More)
Abdominal aortic aneurysm is a multifactorial disease with genetic risk factors and an immunologic component. Immune cells, including macrophages, neutrophils, mast cells, B- and T- lymphocytes, along with vascular smooth muscle cells and adventitial fibroblasts, produce cytokines and enzymes, promoting an inflammatory reaction, extracellular matrix(More)
BACKGROUND The hallmark of lung ischemia-reperfusion injury (IRI) is the production of reactive oxygen species (ROS), and the resultant oxidant stress has been implicated in apoptotic cell death as well as subsequent development of inflammation. Dietary flaxseed (FS) is a rich source of naturally occurring antioxidants and has been shown to reduce lung IRI(More)
BACKGROUND AND AIM Severe injury to the liver, such as that induced by toxic doses of acetaminophen, triggers a cascade of events leading to hepatocyte death. It is hypothesized that activation of the receptor for advanced glycation end products (RAGE) might contribute to acetaminophen-induced liver toxicity by virtue of its ability to generate reactive(More)
BACKGROUND/AIMS We previously showed that blockade of RAGE significantly attenuates hepatic ischemia/reperfusion (I/R) injury in mice. Here, we identify that early growth response-1 (Egr-1) is a downstream target of RAGE in hepatic I/R injury. METHODS Hepatic I/R was induced in male mice. Liver remnants were analyzed for induction of Egr-1 and cytokines,(More)
  • 1