Learn More
We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images(More)
We report on imaging of microcirculation by calculating the speckle variance of optical coherence tomography (OCT) structural images acquired using a Fourier domain mode-locked swept-wavelength laser. The algorithm calculates interframe speckle variance in two-dimensional and three-dimensional OCT data sets and shows little dependence to the Doppler angle(More)
An active catheter intended for controllable intravascular maneuvers is presented and initial experimental results are shown. A commercial catheter is coated with polypyrrole and laser micromachined into electrodes, which are electrochemically activated, leading to bending of the catheter. The catheter's electro-chemo-mechanical properties are theoretically(More)
OBJECTIVES We sought to perform the first systematic study of the natural history of chronic total arterial occlusions (CTOs) in an experimental model. BACKGROUND Angioplasty of CTOs has low success rates. The structural and perfusion changes during CTO maturation, which may adversely affect angioplasty outcome, have not been systematically studied. (More)
We have tested the feasibility of real-time localized blood flow measurements, obtained with interstitial (IS) Doppler optical coherence tomography (DOCT), to predict photodynamic therapy (PDT)-induced tumor necrosis deep within solid Dunning rat prostate tumors. IS-DOCT was used to quantify the PDT-induced microvascular shutdown rate in s.c. Dunning(More)
OBJECTIVES The purpose of this study was to characterize the 3-dimensional structure of intravascular and extravascular microvessels during chronic total occlusion (CTO) maturation in a rabbit model. BACKGROUND Intravascular microchannels are an important component of a CTO and may predict guidewire crossability. However, temporal changes in the structure(More)
BACKGROUND Doppler optical coherence tomography (DOCT) is an imaging modality that allows assessment of the microvascular response during photodynamic therapy (PDT) and may be a powerful tool for treatment monitoring/optimization in conditions such as Barrett's esophagus (BE). OBJECTIVE To assess the technical feasibility of catheter-based intraluminal(More)
Doppler optical coherence tomography (OCT) can image tissue structure and blood flow at micrometer-scale resolution but has limited imaging depth. We report a novel, linear-scanning, needle-based Doppler OCT system using angle-polished gradient-index or ball-lensed fibers. A prototype system with a 19-guage (diameter of approximately 0.9 mm) echogenic(More)
INTRODUCTION Doppler optical coherence tomography (DOCT) is an emerging imaging modality that provides subsurface microstructural and microvascular tissue images with near histological resolution and sub-mm/second velocity sensitivity. A key drawback of OCT for some applications is its shallow (1-3 mm) penetration depth. This fundamentally limits DOCT(More)
Performing single-cell electrophoresis separations using multiple parallel microchannels offers the possibility of both increasing throughput and eliminating cross-contamination between different separations. The instrumentation for such a system requires spatial and temporal control of both single-cell selection and lysis. To address these problems, a(More)