Learn More
We present low complexity, quickly converging robust adaptive beamformers that combine robust Capon beamformer (RCB) methods and data-adaptive Krylov subspace dimensionality reduction techniques. We extend a recently proposed reduced-dimension RCB framework, which ensures proper combination of RCBs with any form of dimensionality reduction that can be(More)
We present low complexity, quickly converging robust adaptive beamformers that combine robust Capon beamformer (RCB) methods and data-adaptive Krylov subspace dimensionality reduction techniques. We extend a recently proposed reduced-dimension RCB framework, which ensures proper combination of RCBs with any form of dimensionality reduction that can be(More)
  • 1