Learn More
Biological nervous systems and the mechanisms underlying their operation exhibit astonishing complexity. Computational models of these systems have been correspondingly complex. As these models become ever more sophisticated, they become increasingly difficult to define, comprehend, manage and communicate. Consequently, for scientific understanding of(More)
Twenty healthy young adults underwent functional magnetic resonance imaging (fMRI) of the brain while performing a visual inspection time task. Inspection time is a forced-choice, two-alternative visual backward-masking task in which the subject is briefly shown two parallel vertical lines of markedly different lengths and must decide which is longer. As(More)
We discuss a framework for the organization of learning systems in the mammalian brain, in which the hippocampus and related areas form a memory system complementary to learning mechanisms in neocortex and other areas. The hippocampal system stores new episodes and "replays" them to the neocortical system, interleaved with ongoing experience, allowing(More)
Schizophrenia is a highly heritable disorder that typically develops in early adult life. Structural imaging studies have indicated that patients with the illness, and to some extent their unaffected relatives, have subtle deficits in several brain regions, including prefrontal and temporal lobes. It is, however, not known how this inherited vulnerability(More)
NEOSIM is a new simulation framework addressed at building large scale and detailed models of the nervous system. Its essence is a set of interfaces and protocols that enable a plug and play architecture for incorporating existing simulation modules such as NEURON [4] and GENESIS [1] as well as future visualisation and data analysis modules. From the start(More)
In an investigation into the transformation of mossy ber input to Purkinje cell output in the cerebellar cortex, we have developed a network model including a sophisticated compartmental model of the Purkinje cell. Analysis and simulations demonstrated the need to include a large number of parallel bers (244,000) to obtain realistic Purkinje cell ring(More)
21.1 Introduction PGENESIS is a parallel form of GENESIS that enables simulation of very large models. Simulation models are critical for integration of behavioral data with anatomical and physiological data. Although explanations of behavioral data are possible without resort to neural simulation models (Chomsky 1957, e.g.), those integrative accounts that(More)
Schizophrenia is a highly heritable psychotic disorder. It has been suggested that deficits of the established state arise from abnormal interactions between brain regions. We sought to examine whether such connectivity abnormalities would be present in subjects at high genetic risk for the disorder. Functional connectivity analysis was carried out on(More)