Learn More
BACKGROUND The molecular mechanism of increased background inward rectifier current (IK1) in atrial fibrillation (AF) is not fully understood. We tested whether constitutively active acetylcholine (ACh)-activated I(K,ACh) contributes to enhanced basal conductance in chronic AF (cAF). METHODS AND RESULTS Whole-cell and single-channel currents were measured(More)
Atrial fibrillation (AF) is an extremely common cardiac rhythm disorder that causes substantial morbidity and contributes to mortality. The mechanisms underlying AF are complex, involving both increased spontaneous ectopic firing of atrial cells and impulse reentry through atrial tissue. Over the past ten years, there has been enormous progress in(More)
RATIONALE Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited. OBJECTIVE To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. (More)
BACKGROUND AND PURPOSE This study was designed to establish the pathology-specific inhibitory effects of the IKur/Ito/IK,ACh blocker AVE0118 on atrium-selective channels and its corresponding effects on action potential shape and effective refractory period in patients with chronic AF (cAF). EXPERIMENTAL APPROACH Outward K+-currents of right atrial(More)
Division of Experimental Cardiology, Dept of Experimental & Clinical Pharmacology, Medical Faculty Mannheim, University of Heidelberg, Mannheim; Dept of Pharmacology & Toxicology, Dresden University of Technology, Dresden, Germany; Dept of Molecular Physiology & Biophysics, Dept of Medicine, Baylor College of Medicine, Houston, TX; Unit of Cardiac(More)
BACKGROUND Delayed afterdepolarizations (DADs) carried by Na(+)-Ca(2+)-exchange current (I(NCX)) in response to sarcoplasmic reticulum (SR) Ca(2+) leak can promote atrial fibrillation (AF). The mechanisms leading to delayed afterdepolarizations in AF patients have not been defined. METHODS AND RESULTS Protein levels (Western blot), membrane currents and(More)
Methods and Results: Atria versus ventricles have lower IK1, resulting in more depolarized resting membrane potential ( 7 mV). We used higher Ito,fast density in atrium, removed Ito,slow, and included an atrial-specific IKur. INCX and INaK densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was(More)
Atrial fibrillation (AF) is the most common clinically relevant arrhythmia and is associated with increased morbidity and mortality. The incidence of AF is expected to continue to rise with the aging of the population. AF is generally considered to be a progressive condition, occurring first in a paroxysmal form, then in persistent, and then long-standing(More)
BACKGROUND Congestive heart failure (CHF) causes atrial fibrotic remodeling, a substrate for atrial fibrillation (AF) maintenance. MicroRNA29 (miR29) targets extracellular matrix proteins. In the present study, we examined miR29b changes in patients with AF and/or CHF and in a CHF-related AF animal model and assessed its potential role in controlling atrial(More)
RATIONALE Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear. OBJECTIVE Determine the role of CaMKII(More)