Niels Holten-Andersen

Learn More
Mussels adhere to a variety of surfaces by depositing a highly specific ensemble of 3,4-dihydroxyphenyl-l-alanine (DOPA) containing proteins. The adhesive properties of Mytilus edulis foot proteins mfp-1 and mfp-3 were directly measured at the nano-scale by using a surface forces apparatus (SFA). An adhesion energy of order W approximately 3 x 10(-4) J/m(2)(More)
The cuticle of mussel byssal threads is a robust natural coating that combines high extensibility with high stiffness and hardness. In this study, fluorescence microscopy and elemental analysis were exploited to show that the 3,4-dihydroxyphenyl-L-alanine (dopa) residues of mussel foot protein-1 colocalize with Fe and Ca distributions in the cuticle of(More)
Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus on the cantilever sensor, the scanning unit and the data acquisition. We manufactured 10 microm wide(More)
For lasting holdfast attachment, the mussel Mytilus californianus coats its byssal threads with a protective cuticle 2-5 microm thick that is 4-6 times stiffer than the underlying collagen fibers. Although cuticle hardness (0.1 GPa) and stiffness (2 GPa) resemble those observed in related mussels, a more effective dispersion of microdamage enables M.(More)
The byssus of marine mussels has attracted attention as a paradigm of strong and versatile underwater adhesion. As the first of the 3,4-dihydroxyphenylalanine (Dopa)-containing byssal precursors to be purified, Mytilus edulis foot protein-1 (mefp-1) has been much investigated with respect to its molecular structure, physical properties, and adsorption to(More)
Growing evidence supports a critical role of metal-ligand coordination in many attributes of biological materials including adhesion, self-assembly, toughness, and hardness without mineralization [Rubin DJ, Miserez A, Waite JH (2010) Advances in Insect Physiology: Insect Integument and Color, eds Jérôme C, Stephen JS (Academic Press, London), pp 75-133].(More)
Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges. If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate. High hardness, however, comes at the expense of extensibility. This property trade-off makes the design of coatings for even moderately(More)
The mechanical holdfast of the mussel, the byssus, is processed at acidic pH yet functions at alkaline pH. Byssi are enriched in Fe3+ and catechol-containing proteins, species with chemical interactions that vary widely over the pH range of byssal processing. Currently, the link between pH, Fe3+-catechol reactions, and mechanical function are poorly(More)
Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be(More)
The extensible byssal threads of marine mussels are shielded from abrasion in wave-swept habitats by an outer cuticle that is largely proteinaceous and approximately fivefold harder than the thread core. Threads from several species exhibit granular cuticles containing a protein that is rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (dopa) as(More)