Niels Bomholt

Learn More
Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge(More)
The structure of the monomer (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol () in twisted intercalating nucleic acids (TINA) was optimized for stabilizing interactions between the intercalator and surrounding nucleobases when used as a triplex forming oligonucleotide (TFO). Enhancement of pi-pi interactions with nucleobases of the TFO was achieved by(More)
When inserting 2-phenyl or 2-naphth-1-yl-phenanthroimidazole intercalators (X and Y, respectively) as bulges into triplex-forming oligonucleotides, both intercalators show extraordinary high thermal stability of the corresponding Hoogsteen-type triplexes and Hoogsteen-type parallel duplexes with high discrimination to Hoogsteen mismatches. Molecular(More)
Triplex-forming homopyrimidine oligonucleotides containing insertions of a 2'-5' uridine linkage featuring a pyrene moiety at the 3'-position exhibit strong fluorescence enhancement upon binding to double-stranded DNA through Hoogsteen base pairing. It is shown that perfect matching of the new modification to the base pair in the duplex is a prerequisite(More)
A new intercalating nucleic acid monomer M comprising a 4-(1-indole)-butane-1,2-diol moiety was synthesized via a classical alkylation reaction of indole-3-carboxaldehyde followed by a condensation reaction with phenanthrene-9,10-dione in the presence of ammonium acetate to form a phenanthroimidazole moiety linked to the indole ring. Insertion of the new(More)
Bulge insertions of conjugated intercalators into the DNA triplex structure are found to give a dramatic contribution to the triplex stability. On the other hand insertions of conjugated intercalators are found to diminish quadruplex structures and in this way breaking down the self association of G-rich oligonucleotides under physiologically potassium ion(More)
Non-nucleosidic DNA monomers comprising partially protonated amines at low pH have been designed and synthesized. The modifications were incorporated into DNA oligonucleotides via standard DNA phosphoramidite synthesis. The ability of cationic modifications to stabilize palindromic DNA hairpins and parallel triplexes were evaluated using gel(More)
  • 1