Learn More
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells (Gunning et al. 1998b). We(More)
Spatially distinct populations of microfilaments, characterized by different tropomyosin (Tm) isoforms, are present within a neuron. To investigate the impact of altered tropomyosin isoform expression on neuronal morphogenesis, embryonic cortical neurons from transgenic mice expressing the isoforms Tm3 and Tm5NM1, under the control of the beta-actin(More)
A growing body of evidence suggests that the Golgi complex contains an actin-based filament system. We have previously reported that one or more isoforms from the tropomyosin gene Tm5NM (also known as gamma-Tm), but not from either the alpha- or beta-Tm genes, are associated with Golgi-derived vesicles (Heimann et al., (1999). J. Biol. Chem. 274,(More)
Increasing evidence suggests that an inflammatory microenvironment promotes invasion by glioblastoma (GBM) cells. Together with p38 mitogen-activated protein kinase (MAPK) activation being regarded as promoting inflammation, we hypothesized that elevated inflammatory cytokine secretion and p38 MAPK activity contribute to expansion of GBMs. Here we report(More)
BACKGROUND Lamellipodial protrusion, which is the first step in cell movement, is driven by actin assembly and requires activity of the Arp2/3 actin-nucleating complex. However, it is unclear how actin assembly is dynamically regulated to support effective cell migration. RESULTS Cells deficient in cortactin have impaired cell migration and invasion.(More)
The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5(NM1)), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape.(More)
Elemental mapping and fluorescence imaging techniques are frequently employed to probe the distribution of platinum-based chemotherapeutics within biological systems. Although useful, these techniques have unique limitations: elemental mapping methods, such as those that use particle beams, typically require rigorous sample preparation that can alter(More)
Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at(More)
The penetration of anthraquinones and their platinum complexes into cancer cell spheroids reveals that they model well the distribution of such compounds in solid tumours and that the proportion of the compound that accumulates deep in the spheroid is inversely related to the rate of cellular uptake which is affected by the charge of the compound.
The rational design of prodrugs for selective accumulation and activation in tumor microenvironments is one of the most promising strategies for minimizing the toxicity of anticancer drugs. Manipulation of the charge of the prodrug represents a potential mechanism to selectively deliver the prodrug to the acidic tumor microenvironment. Here we present(More)