Nicole Martin-Moutot

Learn More
omega-Conotoxin-sensitive N-type calcium channels control neurotransmitter release at the nerve terminal and interact with proteins implicated in secretion. Solubilized omega-conotoxin receptors from rat brain synaptic membrane were immunoprecipitated by antibodies against calcium channel alpha 1 subunits, syntaxin, and a 105-kDa plasma membrane protein. A(More)
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease caused by a small expansion of CAG repeats in the sequence coding for the cytoplasmic C-terminal region of the Ca(v)2.1 subunit of P/Q-type calcium channels. We have tested the toxicity of mutated Ca(v)2.1 C-terminal domains expressed in the plasma membrane. In COS-7(More)
Neurotransmitter release from synaptic vesicles is triggered by voltage-gated calcium influx through P/Q-type or N-type calcium channels. Purification of N-type channels from rat brain synaptosomes initially suggested molecular interactions between calcium channels and two key proteins implicated in exocytosis: synaptotagmin I and syntaxin 1.(More)
Recent studies suggested that autoantibodies that bind to voltage-dependent calcium channels and activate calcium entry may play a role in the progressive degeneration of motoneurons in sporadic amyotrophic lateral sclerosis. Immunoassays were performed to assess autoantibody titer in patients with amyotrophic lateral sclerosis or Lambert-Eaton myasthenic(More)
  • C Leveque, T Hoshino, +7 authors N Martin-Moutot
  • Proceedings of the National Academy of Sciences…
  • 1992
Immunoglobulin G fractions from patients with Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disease of neuromuscular transmission, immunoprecipitate 125I-labeled omega-conotoxin GVIA-labeled calcium channels solubilized from rat brain. A 58-kDa antigen was detected by probing Western blots of partially purified calcium channels with LEMS plasma(More)
P- and Q-type calcium channels, which trigger rapid neurotransmitter release at many mammalian synapses, are blocked by omega-conotoxin MVIIC. 125I-omega-Conotoxin MVIIC binding to rat cerebellar synaptosomes was not displaced by omega-conotoxins GVIA or MVIIA (Ki > 1 microM), which are selective for N-type calcium channels. Solubilized 125I-omega-conotoxin(More)
Fetal mouse brain cells were investigated by 22Na+ flux assays with the aim to determine the ontogenetic time course of appearance of functional voltage-sensitive sodium channels. Their pharmacological properties were assessed by measurement of the response to known neurotoxins, acting at site 1, 2, or 3 of the Na+ channel. Brain cell suspensions, prepared(More)