Learn More
We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more(More)
Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to(More)
The evolution of self-fertilization can mediate pronounced changes in genomes as a by-product of a drastic reduction in effective population size and the concomitant accumulation of slightly deleterious mutations by genetic drift. In the nematode genus Caenorhabditis, a highly selfing lifestyle has evolved twice independently, thus permitting an opportunity(More)
The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes(More)
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties(More)
FER-1 is required for fusion of specialized vesicles, called membranous organelles, with the sperm plasma membrane during Caenorhabditis elegans spermiogenesis. To investigate its role in membranous organelle fusion, we examined ten fer-1 mutations and found that they all cause the same defect in membrane fusion. FER-1 and the ferlin protein family are(More)
A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as “How did(More)
Numerous new disease-gene associations have been identified by whole-exome sequencing studies in the last few years. However, many cases remain unsolved due to the sheer number of candidate variants remaining after common filtering strategies such as removing low quality and common variants and those deemed unlikely to be pathogenic. The observation that(More)
The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the(More)
Phenotype analyses, e.g. investigating metabolic processes, tissue formation, or organism behavior, are an important element of most biological and medical research activities. Biomedical researchers are making increased use of ontological standards and methods to capture the results of such analyses, with one focus being the comparison and analysis of(More)