Learn More
The impact of paternal care on the development of catecholaminergic fiber innervations in the prefrontal cortex, nucleus accumbens, hippocampus and the amygdala was quantitatively investigated in the biparental Octodon degus. Two age (juvenile, adult) and rearing groups: (1) degus reared without father and (2) degus raised by both parents were compared.(More)
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type,(More)
The view that the functional maturation of the brain is the result of an environmentally driven adaptation of genetically preprogrammed neuronal networks is an important current concept in developmental neuroscience and psychology. This hypothesis proposes that early traumatic experiences or early life stress (ELS) as a negative environmental experience(More)
The human SLC4A5 gene has been identified as a hypertension susceptibility gene based on the association of single nucleotide polymorphisms with blood pressure (BP) levels and hypertension status. The biochemical basis of this association is unknown particularly since no single gene variant was linked to hypertension in humans. SLC4A5 (NBCe2, NBC4) is(More)
The present study in juvenile rats investigated a “two-hit model” to test the impact of prenatal stress exposure (“first hit”) on the regulation of the synaptic plasticity immediate early genes Arc and Egr1 in response to a second neonatal stressor (“second hit”) in a sex-specific manner. Three stress-exposed animal groups were compared at the age of 21(More)
Chronic stress (CS) during early life represents a major risk factor for the development of mental disorders, including depression. According to the Two/Multiple-Hit hypothesis, the etiology of neuropsychiatric disorders usually involves multiple stressors experienced subsequently during different phases of life. However, the molecular and cellular(More)
Both positive feedback learning and negative feedback learning are essential for adapting and optimizing behavioral performance. There is increasing evidence in humans and animals that the ability of negative feedback learning emerges postnatally. Our work in rats, using a two-way active avoidance task (TWA) as an experimental paradigm for negative feedback(More)
  • 1