Nicole G. H. Leferink

Learn More
The oxygen reactivity of flavoproteins is poorly understood. Here we show that a single Ala to Gly substitution in l-galactono-gamma-lactone dehydrogenase (GALDH) turns the enzyme into a catalytically competent oxidase. GALDH is an aldonolactone oxidoreductase with a vanillyl-alcohol oxidase (VAO) fold. We found that nearly all oxidases in the VAO family(More)
There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30 degrees C)(More)
Nitric oxide (NO) plays diverse roles in mammalian physiology. It is involved in blood pressure regulation, neurotransmission, and immune response, and is generated through complex electron transfer reactions catalyzed by NO synthases (NOS). In neuronal NOS (nNOS), protein domain dynamics and calmodulin binding are implicated in regulating electron flow(More)
Enzyme mechanisms are often probed by structure-informed point mutations and measurement of their effects on enzymatic properties to test mechanistic hypotheses. In many cases, the challenge is to report on complex, often inter-linked elements of catalysis. Evidence for long-range effects on enzyme mechanism resulting from mutations remains sparse, limiting(More)
A major challenge in enzymology is the need to correlate the dynamic properties of enzymes with, and understand the impact on, their catalytic cycles. This is especially the case with large, multicenter enzymes such as the nitric oxide synthases (NOSs), where the importance of dynamics has been inferred from a variety of structural, single-molecule, and(More)
  • 1