Nicole Forgione

Learn More
BACKGROUND The Rho pathway has been shown to have a role in the pathophysiology of spinal cord injury (SCI). Upregulation of the Rho signaling pathway occurs as a result of SCI. Activation of Rho and its downstream effector kinases triggers growth cone collapse and represents a significant barrier to axon regeneration. Furthermore, there is evidence that(More)
The mechanisms by which neural precursor cells (NPCs) enhance functional recovery from spinal cord injury (SCI) remain unclear. Spinal cord injured rats were transplanted with wild-type mouse NPCs, shiverer NPCs unable to produce myelin, dead NPCs, or media. Most animals also received minocycline, cyclosporine, and perilesional infusion of trophins. Motor(More)
Inhibition of histone deacetylase (HDAC) activity results in dedifferentiation of various neural precursor cell populations, but is also known to promote neuronal differentiation. We sought to determine the effects of HDAC inhibition on differentiated and non-differentiated midbrain cells in order to examine more closely the consequences of HDAC inhibition(More)
Histone deacetylase (HDAC) proteins have a role in promoting neuronal survival in vitro, but the mechanism underlying this function has not been identified. Here we provide evidence that components of the neuronal microenvironment, including non-neuronal cells and defined culture media, can mitigate midbrain neuronal cell death induced by HDAC inhibitor(More)
Despite the increasing incidence and prevalence of cervical spinal cord injury (cSCI), we lack clinically relevant animal models that can be used to study the pathomechanisms of this injury and test new therapies. Here, we characterize a moderate cervical contusion-compression model in rats that is similar to incomplete traumatic cSCI in humans. We(More)
  • 1