Nicole Forgione

Learn More
BACKGROUND The Rho pathway has been shown to have a role in the pathophysiology of spinal cord injury (SCI). Upregulation of the Rho signaling pathway occurs as a result of SCI. Activation of Rho and its downstream effector kinases triggers growth cone collapse and represents a significant barrier to axon regeneration. Furthermore, there is evidence that(More)
Human male infertility affects approximately 5% of men, with one-third suffering from testicular failure, likely the result of an underlying genetic abnormality that disrupts spermatogenesis during development. Mouse models of male infertility such as the Ppp1cc knockout mouse display very similar phenotypes to humans with testicular failure. Male Ppp1cc(More)
Histone deacetylase (HDAC) proteins have a role in promoting neuronal survival in vitro, but the mechanism underlying this function has not been identified. Here we provide evidence that components of the neuronal microenvironment, including non-neuronal cells and defined culture media, can mitigate midbrain neuronal cell death induced by HDAC inhibitor(More)
Despite the increasing incidence and prevalence of cervical spinal cord injury (cSCI), we lack clinically relevant animal models that can be used to study the pathomechanisms of this injury and test new therapies. Here, we characterize a moderate cervical contusion-compression model in rats that is similar to incomplete traumatic cSCI in humans. We(More)
The mechanisms by which neural precursor cells (NPCs) enhance functional recovery from spinal cord injury (SCI) remain unclear. Spinal cord injured rats were transplanted with wild-type mouse NPCs, shiverer NPCs unable to produce myelin, dead NPCs, or media. Most animals also received minocycline, cyclosporine, and perilesional infusion of trophins. Motor(More)
Inhibition of histone deacetylase (HDAC) activity results in dedifferentiation of various neural precursor cell populations, but is also known to promote neuronal differentiation. We sought to determine the effects of HDAC inhibition on differentiated and non-differentiated midbrain cells in order to examine more closely the consequences of HDAC inhibition(More)
Spinal cord injuries (SCI) cause serious neurological impairment and psychological, economic, and social consequences for patients and their families. Clinically, more than 50% of SCI affect the cervical spine. As a consequence of the primary injury, a cascade of secondary mechanisms including inflammation, apoptosis, and demyelination occur finally leading(More)
Cervical spinal cord injury (cSCI) occurs in over half of all cases of traumatic spinal cord injury (SCI), yet we lack therapies that can generate significant functional recovery in these patients. The development of animal models of cSCI will aid in the pre-clinical assessment of therapies and in understanding basic pathophysiological mechanisms. Here, we(More)
  • 1