Nicole E. Bodycombe

Learn More
ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for(More)
The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer(More)
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and(More)
Pancreatic beta-cell apoptosis is a critical event during the development of type-1 diabetes. The identification of small molecules capable of preventing cytokine-induced apoptosis could lead to avenues for therapeutic intervention. We developed a set of phenotypic cell-based assays designed to identify such small-molecule suppressors. Rat INS-1E cells were(More)
Using a diverse collection of small molecules generated from a variety of sources, we measured protein-binding activities of each individual compound against each of 100 diverse (sequence-unrelated) proteins using small-molecule microarrays. We also analyzed structural features, including complexity, of the small molecules. We found that compounds from(More)
Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the(More)
How many hits from a high-throughput screen should be sent for confirmatory experiments? Analytical answers to this question are derived from statistics alone and aim to fix, for example, the false discovery rate at a predetermined tolerance. These methods, however, neglect local economic context and consequently lead to irrational experimental strategies.(More)
High-throughput screening has become a mainstay of small-molecule probe and early drug discovery. The question of how to build and evolve efficient screening collections systematically for cell-based and biochemical screening is still unresolved. It is often assumed that chemical structure diversity leads to diverse biological performance of a library.(More)
High-throughput screening allows rapid identification of new candidate compounds for biological probe or drug development. Here, we describe a principled method to generate "assay performance profiles" for individual compounds that can serve as a basis for similarity searches and cluster analyses. Our method overcomes three challenges associated with(More)
The availability of high-throughput techniques combined with more exploratory and confirmatory studies in small-molecule science (e.g., probe- and drug-discovery) creates a significant need for structured approaches to data management. The probe- and drug-discovery scientific processes start and end with lower-throughput experiments, connected often by(More)