Nicole Croci

Learn More
The role of nitric oxide (NO) in the development of post-ischemic cerebral infarction has been extensively examined, but fewer studies have investigated its role in other outcomes. In the present study, we first determined the temporal evolution of infarct volume, NO production, neurological deficit and blood-brain barrier disruption in a model of transient(More)
Inhibition of the bradykinin B2 receptor type (B2R) has been shown to improve neurological outcome in models of focal traumatic brain injury. However, the involvement of B2R in trauma-induced diffuse injury has not yet been explored. This is an important point, since in humans a pattern of diffuse injury is commonly found in severely injured patients and(More)
One of the severe complications following traumatic brain injury (TBI) is cerebral edema and its effective treatment is of great interest to prevent further brain damage. This study investigated the effects of minocycline, known for its anti-inflammatory properties, on cerebral edema and its respective inflammatory markers by comparing different dose(More)
Traumatic brain injury produces nitric oxide and reactive oxygen species. Peroxynitrite, resulting from the combination of nitric oxide and superoxide anions, triggers DNA strand breaks, leading to the activation of poly(ADP-ribose)polymerase-1. As excessive activation of this enzyme induces cell death, we examined the production of nitrosative stress, the(More)
Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the(More)
Traumatic brain injury (TBI) induces both focal and diffuse lesions that are concurrently responsible for the ensuing morbidity and mortality and for which no established treatment is available. It has been recently reported that an endogenous neuroprotector, the soluble form α of the amyloid precursor protein (sAPPα), exerts neuroprotective effects(More)
The present work examined whether polymorphonuclear neutrophil (PMN) infiltration contributes to cortical and striatal brain damage and oxidative stress in a model of transient focal cerebral ischemia. A 2-h occlusion of the left middle cerebral artery and ipsilateral common carotid artery was performed in rats. Administration of the neutropenic agent(More)
Traumatic brain injury models are widely studied, especially through gene expression, either to further understand implied biological mechanisms or to assess the efficiency of potential therapies. A large number of biological pathways are affected in brain trauma models, whose elucidation might greatly benefit from transcriptomic studies. However the(More)
Traumatic brain injury (TBI) causes a wide spectrum of consequences, such as microglial activation, cerebral inflammation, and focal and diffuse brain injury, as well as functional impairment. In this study we aimed to investigate the effects of acute treatment with minocycline as an inhibitor of microglial activation on cerebral focal and diffuse lesions,(More)
Poly(ADP-ribose) polymerase (PARP) was shown to be detrimental in cerebral ischemia but the mechanisms whereby PARP is deleterious have yet to be determined. They may include a role in neutrophil infiltration known to aggravate ischemic damage. In this context, we investigated the effect of 3-aminobenzamide (3-AB), a PARP inhibitor, on brain damage and(More)