Nicole C. Hauser

Learn More
Correspondence analysis is an explorative computational method for the study of associations between variables. Much like principal component analysis, it displays a low-dimensional projection of the data, e.g., into a plane. It does this, though, for two variables simultaneously, thus revealing associations between them. Here, we demonstrate the(More)
Open reading frames (6116) of the budding yeast Saccharomyces cerevisiae were PCR-amplified from genomic DNA using 12,232 primers specific to the ends of the coding sequences; the success rate of amplification was 97%. PCR-products were made accessible to hybridization by being arrayed at very high density on solid support media using various robotic(More)
Plants respond to pathogen attack by deploying several defense reactions. Some rely on the activation of preformed components, whereas others depend on changes in transcriptional activity. Using cDNA arrays comprising 13,000 unique expressed sequence tags, changes in the transcriptome of Arabidopsis thaliana were monitored after attempted infection with the(More)
Perturbations of the yeast cell wall trigger a repair mechanism that reconfigures its molecular structure to preserve cell integrity. To investigate this mechanism, we compared the global gene expression in five mutant strains, each bearing a mutation (i.e. fks1, kre6, mnn9, gas1, and knr4 mutants) that affects in a different manner the cell wall(More)
Glucose exerts profound effects upon yeast physiology. In general, the effects of high glucose concentrations (>1%) upon Saccharomyces cerevisiae have been studied. In this paper, we have characterized the global responses of yeast cells to very low (0.01%), low (0.1%) and high glucose signals (1.0%) by transcript profiling. We show that yeast is more(More)
MOTIVATION The technology of hybridization to DNA arrays is used to obtain the expression levels of many different genes simultaneously. It enables searching for genes that are expressed specifically under certain conditions. However, the technology produces large amounts of data demanding computational methods for their analysis. It is necessary to find(More)
A transcriptome analysis was performed of Saccharomyces cerevisiae undergoing isoamyl alcohol-induced filament formation. In the crucial first 5 h of this process, only four mRNA species displayed strong and statistically significant increases in their levels of more than 10-fold. Two of these (YEL071w/DLD3 and YOL151w/GRE2) appear to play important roles(More)
Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first(More)
The covalently linked cell wall protein Ccw12p of Saccharomyces cerevisiae is a GPI-anchored protein (V. Mrsa et al., 1999, J Bacteriol 181: 3076-3086). Although only 121 amino acids long, the haemagglutinin-tagged protein released by laminarinase from the cell wall possesses an apparent molecular mass of > 300 kDa. A membrane-bound form with an apparent(More)
Previously, we have shown that PDE2 is required for hyphal development and cell wall integrity in Candida albicans. In the present study, we have investigated the effects of its deletion by genome-wide transcriptome profiling. Changes in expression levels of genes involved in metabolism, transcription, protein and nucleic acids synthesis, as well as stress(More)