Nicole Brazda

Learn More
Axon regeneration and the sprouting processes that underlie plasticity are blocked by inhibitory factors in the central nervous system (CNS) environment, several of which are upregulated after injury. The major inhibitory molecules are those associated with myelin and those associated with the glial scar. In myelin, NogoA, MAG, and OMgp are present on(More)
Impaired axonal regeneration is a common observation after central nervous system (CNS) injury. The stromal cell-derived factor-1, SDF-1/CXCL12, has previously been shown to promote axonal growth in the presence of potent chemorepellent molecules known to be important in nervous system development. Here, we report that treatment with SDF-1alpha is(More)
We identified a suitable biomatrix that improved axon regeneration and functional outcome after partial (moderate) and complete (severe) chronic spinal cord injury (SCI) in rat. Five weeks after dorsal thoracic hemisection injury the lesion scar was resected via aspiration and the resulting cavity was filled with different biopolymers such as Matrigel™,(More)
We analysed the effect of scar-suppressing treatment (anti-scarring treatment; AST) on augmenting axonal regeneration of various neuronal populations following spinal cord injury (SCI) in adult rat. AST included local iron chelator (2,2'-dipyridine-5,5'-dicarboxylic acid) injection and 8-bromo-cyclic adenosine monophosphate application to the lesion core.(More)
Traumatic spinal cord injury (SCI) results in the formation of a fibrous scar acting as a growth barrier for regenerating axons at the lesion site. We have previously shown (Klapka et al., 2005) that transient suppression of the inhibitory lesion scar in rat spinal cord leads to long distance axon regeneration, retrograde rescue of axotomized cortical(More)
After a spinal cord injury (SCI) a scar forms in the lesion core which hinders axonal regeneration. Bridging the site of injury after an insult to the spinal cord, tumor resections, or tissue defects resulting from traumatic accidents can aid in facilitating general tissue repair as well as regenerative growth of nerve fibers into and beyond the affected(More)
This chapter focuses on the role of the fibrous lesion scar as a major impediment for axonal regeneration in the injured central nervous system (CNS). We describe the appearance and complementary distribution of the glial and fibrous scar components in spinal cord lesions focusing on the morphology as well as on axon growth inhibitory molecular components(More)
Preclinical research in the field of central nervous system trauma advances at a fast pace, currently yielding over 8,000 new publications per year, at an exponentially growing rate. This amount of published information by far exceeds the capacity of individual scientists to read and understand the relevant literature. So far, no clinical trial has led to(More)
Complete transection of the spinal cord leaves a gap of several mm which fills with fibrous scar tissue. Several approaches in rodent models have used tubes, foams, matrices or tissue implants to bridge this gap. Here, we describe a mechanical microconnector system (mMS) to re-adjust the retracted spinal cord stumps. The mMS is a multi-channel system of(More)
Lesion-induced scarring is a major impediment for regeneration of injured axons in the central nervous system (CNS). The collagen-rich glial-fibrous scar contains numerous axon growth inhibitory factors forming a regeneration-barrier for axons. We demonstrated previously that the combination of the iron chelator 2,2'-bipyridine-5,5'-decarboxylic acid(More)