Nicole A. Siddall

Learn More
A key goal of regenerative medicine is an understanding of the genetic factors that define the properties of stem cells. However, stem cell research in mammalian tissue has been hampered by a paucity of stem cell-specific markers. Although increasing evidence suggests that members of the Musashi (Msi) family of RNA-binding proteins play important functions(More)
Mutations in the lozenge gene of Drosophila melanogaster elicit a pleiotropic set of adult phenotypes, including severe compound eye perturbations resulting from the defective recruitment of photoreceptors R1/6 and R7, cone and pigment cells. In this study, we show that excessive patterned apoptosis is evident at the same developmental stage in these(More)
Spermatogenesis is a complex developmental process whereby diploid spermatogenic stem cells become haploid and undergo a series of morphological changes to produce physically mature spermatozoa. Crucial to this process are a number of RNA-binding proteins, responsible for the posttranscriptional control of essential mRNAs and particularly pertinent to the(More)
The mechanisms by which germline stem cells (GSCs) in the Drosophila testis undergo asymmetric division to regenerate a stem cell as well as a daughter (gonialblast) that will only undergo a further four mitotic divisions prior to entering premeiotic S phase and differentiating into a cyst of spermatocytes are not fully resolved. Here we demonstrate that(More)
During the development of the Drosophila eye, specific cell types differentiate from an initially equipotent group of uncommitted precursor cells. The lozenge (lz) gene, which is a member of the Runt family of transcriptional regulators, plays a pivotal role in mediating this process through regulating the expression of several fate-specifying transcription(More)
The Myc family proteins are key regulators of animal growth and development. dMyc, the only Drosophila member of the Myc gene family, is orthologous to the mammalian c-Myc oncoprotein. Extensive studies have revealed much about both upstream regulators and downstream target genes in the sphere of Myc regulation. Here, we review some of the critical(More)
The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell(More)
In order to maintain their unlimited capacity to divide, stem cells require controlled temporal and spatial protein expression. The Musashi family of RNA-binding proteins have been shown to exhibit this necessary translational control through both repression and activation in order to regulate multiple stem cell populations. This chapter looks in depth at(More)
The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila(More)
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on(More)