Learn More
We consider the problem of embedding entities and relationships of multi-relational data in low-dimensional vector spaces. Our objective is to propose a canonical model which is easy to train, contains a reduced number of parameters and can scale up to very large databases. Hence, we propose TransE, a method which models relationships by interpreting them(More)
Image annotation datasets are becoming larger and larger, with tens of millions of images and tens of thousands of possible annotations. We propose a strongly performing method that scales to such datasets by simultaneously learning to optimize precision at the top of the ranked list of annotations for a given image and learning a low-dimensional joint(More)
Training large-scale question answering systems is complicated because training sources usually cover a small portion of the range of possible questions. This paper studies the impact of multitask and transfer learning for simple question answering ; a setting for which the reasoning required to answer is quite easy, as long as one can retrieve the correct(More)
Image annotation datasets are becoming larger and larger, with tens of millions of images and tens of thousands of possible annotations. We propose a strongly performing method that scales to such datasets by simultaneously learning to optimize precision at k of the ranked list of annotations for a given image and learning a low-dimensional joint embedding(More)
We address the problem of learning classifiers when observations have multiple views, some of which may not be observed for all examples. We assume the existence of view generating functions which may complete the missing views in an approximate way. This situation corresponds for example to learning text classifiers from multilingual collections where(More)
Building computers able to answer questions on any subject is a long standing goal of artificial intelligence. Promising progress has recently been achieved by methods that learn to map questions to logical forms or database queries. Such approaches can be effective but at the cost of either large amounts of human-labeled data or by defining lexicons and(More)
We consider the problem of embedding entities and relations of knowledge bases in low-dimensional vector spaces. Unlike most existing approaches, which are primarily efficient for modeling equivalence relations, our approach is designed to explicitly model ir-reflexive relations, such as hierarchies, by interpreting them as translations operating on the(More)
In ranking with the pairwise classification approach, the loss associated to a predicted ranked list is the mean of the pairwise classification losses. This loss is inadequate for tasks like information retrieval where we prefer ranked lists with high precision on the top of the list. We propose to optimize a larger class of loss functions for ranking,(More)
We propose an extension to neural network language models to adapt their prediction to the recent history. Our model is a simplified version of memory augmented networks, which stores past hidden activations as memory and accesses them through a dot product with the current hidden activation. This mechanism is very efficient and scales to very large memory(More)
This paper proposes a novel approach for relation extraction from free text which is trained to jointly use information from the text and from existing knowledge. Our model is based on scoring functions that operate by learning low-dimensional embeddings of words, entities and relationships from a knowledge base. We empirically show on New York Times(More)