Nicolas Renaud

Learn More
Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital(More)
The capture and transduction of energy in biological systems is clearly necessary for life, and nature has evolved remarkable macromolecular entities to serve these purposes. The Fenna-Matthews-Olson (FMO) complex serves as an intermediate to transfer the energy from the chlorosome to the special pairs of different photo systems. Recent observations have(More)
We developed a model for hole migration along relatively short DNA hairpins with fewer that seven adenine (A):thymine (T) base pairs. The model was used to simulate hole migration along poly(A)-poly(T) sequences with a particular emphasis on the impact of partial hole localization on the different rate processes. The simulations, performed within the(More)
Quantum interference is a well-known phenomenon that dictates charge transport properties of single molecule junctions. However, reports on quantum interference in donor-bridge-acceptor molecules are scarce. This might be due to the difficulties in meeting the conditions for the presence of quantum interference in a donor-bridge-acceptor system. The(More)
We report numerical simulations based on a non-Markovian density matrix propagation scheme of singlet fission (SF) in molecular crystals. Ab initio electronic structure calculations were used to parametrize the exciton and phonon Hamiltonian as well as the interactions between the exciton and the intramolecular and intermolecular vibrational modes. We(More)
After almost 40 years of development, molecular electronics has given birth to many exciting ideas that range from molecular wires to molecular qubit-based quantum computers. This chapter reviews our efforts to answer a simple question: how smart can a single molecule be? In our case a molecule able to perform a simple Boolean function is a child prodigy.(More)
By generating two free charge carriers from a single high-energy photon, singlet fission (SF) promises to significantly improve the efficiency of a class of organic photovoltaics (OPVs). However, SF is generally a very inefficient process with only a small number of absorbed photons successfully converting into triplet states. In this Letter, we map the(More)
The concept of isoindicial surfaces and position variables is used to develop analytical expressions for the effective focal length and back focal length of a single gradient lens with a spherical distribution of refractive index, where the square of the refractive index is a quadratic function of the distance from the center of symmetry.
We have studied the electron transfer occurring in the photosystem I (PSI) reaction center from the special pair to the first iron-sulfur cluster. Electronic structure calculations performed at the DFT level were employed to determine the on-site energies of the fragments comprising PSI, as well as the charge transfer integrals between neighboring pairs.(More)