Nicolas N. Negre

Learn More
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties(More)
Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide has successfully identified specific subtypes of regulatory elements. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb(More)
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP-chip the genome-wide binding sites of 6 insulator-associated proteins-dCTCF, CP190,(More)
Polycomb group (PcG) proteins are able to maintain the memory of silent transcriptional states of homeotic genes throughout development. In Drosophila, they form multimeric complexes that bind to specific DNA regulatory elements named PcG response elements (PREs). To date, few PREs have been identified and the chromosomal distribution of PcG proteins during(More)
While translational stop codon readthrough is often used by viral genomes, it has been observed for only a handful of eukaryotic genes. We previously used comparative genomics evidence to recognize protein-coding regions in 12 species of Drosophila and showed that for 149 genes, the open reading frame following the stop codon has a protein-coding(More)
We evaluated how variations in sequencing depth and other parameters influence interpretation of chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Using Drosophila melanogaster S2 cells, we generated ChIP-seq data sets for a site-specific transcription factor (Suppressor of Hairy-wing) and a histone modification (H3K36me3). We detected a(More)
Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone(More)
Chromatin insulators are genetic elements implicated in the organization of chromatin and the regulation of transcription. In Drosophila, different insulator types were characterized by their locus-specific composition of insulator proteins and co-factors. Insulators mediate specific long-range DNA contacts required for the three dimensional organization of(More)
The Polycomb gene was discovered 60 years ago as a mutation inducing a particular homeotic phenotype. Subsequent work showed that Polycomb is a general repressor of homeotic genes. Other genes with similar function were identified and named Polycomb group (PcG) genes, while trithorax group (trxG) genes were shown to counteract PcG-mediated repression of(More)
We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation(More)