Nicolas Lentze

Learn More
A key property of complex biological systems is the presence of interaction networks formed by its different components, primarily proteins. These are crucial for all levels of cellular function, including architecture, metabolism and signalling, as well as the availability of cellular energy. Very stable, but also rather transient and dynamic(More)
BACKGROUND The yeast two-hybrid system is the most widely used genetic assay to identify and characterize novel protein interactions. Over the past decade, the system has been adapted to cover an increasingly wide range of applications, including various tasks within the drug discovery and development process. OBJECTIVE We highlight the role of different(More)
AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding(More)
Cystic fibrosis lung disease is caused by reduced Cl− secretion along with enhanced Na+ absorption, leading to reduced airway surface liquid and compromised mucociliary clearance. Therapeutic strategies have been developed to activate cystic fibrosis transmembrane conductance regulator (CFTR) or to overcome enhanced Na+ absorption by the epithelial Na+(More)
The classical yeast two-hybrid system and its modifications have been successfully used over the past decade to investigate interactions between most classes of proteins expressed in a given cell or tissue. However, some proteins (e.g., integral membrane proteins or nuclear proteins) are relatively difficult to investigate by standard yeast two-hybrid(More)
Yeast two-hybrid based systems are powerful tools for the detection and characterization of protein-protein interactions (PPIs). However, some important protein classes, e.g., integral membrane proteins and transcription factors, are difficult to study using these technologies. To overcome these limitations, we have employed a novel protein complementation(More)
  • 1