Learn More
Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar(More)
Plants encode a large number of leucine-rich repeat receptor-like kinases. Legumes encode several LRR-RLK linked to the process of root nodule formation, the ligands of which are unknown. To identify ligands for these receptors, we used a combination of profile hidden Markov models and position-specific iterative BLAST, allowing us to detect new members of(More)
PathExpress is a web-based tool developed to interpret gene expression data obtained from microarray experiments by identifying the most relevant metabolic pathways associated with a subset of genes (e.g. differentially expressed genes). A graphical pathway representation permits the visualization of the expressed genes in a functional context. Based on the(More)
To interpret microarray experiments, several ontological analysis tools have been developed. However, current tools are limited to specific organisms. We developed a bioinformatics system to assign the probe set sequences of any organism to a hierarchical functional classification modelled on KEGG ontology. The GeneBins database currently supports the(More)
PURPOSE Current prognostic factors are poor at identifying patients at risk of disease recurrence after surgery for stage II colon cancer. Here we describe a DNA microarray-based prognostic assay using clinically relevant formalin-fixed paraffin-embedded (FFPE) samples. PATIENTS AND METHODS A gene signature was developed from a balanced set of 73 patients(More)
The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip® to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate(More)
The Medicago truncatula (M. truncatula) line 2HA has a 500-fold greater capacity to regenerate plants in culture by somatic embryogenesis than its wild type progenitor Jemalong. To understand the molecular basis for the regeneration capacity of this super-embryogenic line 2HA, using Affymetrix GeneChip®, we have compared transcriptomes of explant leaf(More)
We investigated variation in transcript abundance in the scleractinian coral, Acropora millepora, within and between populations characteristically exposed to different turbidity regimes and hence different levels of light and suspended particulate matter. We examined phenotypic plasticity by comparing levels of gene expression between source populations(More)
Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies.(More)
Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated(More)