Nicolas F Wiernsperger

Learn More
Hyperglycemia-induced oxidative stress is detrimental for endothelial cells, contributing to the vascular complications of diabetes. The mitochondrial permeability transition pore (PTP) is an oxidative stress-sensitive channel involved in cell death; therefore, we have examined its potential role in endothelial cells exposed to oxidative stress or high(More)
Advanced glycation end-products (AGE) are generated by chronic hyperglycaemia and may cause diabetic microvascular complications such as diabetic nephropathy. Many factors influence the development of diabetic nephropathy; however, dysregulation of mesangial cell (MC) proliferation appears to play an early and crucial role. In this study, we investigated(More)
One of the earliest changes observed in retinal microvessels in diabetic retinopathy is the selective loss of intramural pericytes. We tested the hypothesis that AGE might be involved in the disappearance of retinal pericytes by apoptosis and further investigated the signaling pathway leading to cell death. Chronic exposure of pericytes to(More)
Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and(More)
Oxidative stress has been repetitively shown to be a hallmark of many diseases linked with metabolic or vascular disorders. Therefore diabetes represents an ideal candidate for studying the consequences of oxidative stress and its treatment. Indeed diabetes constitutes a multiple source of free radicals, starting very early in the disease process and(More)
Accumulating evidence suggests that high concentrations of leptin observed in obesity and diabetes may contribute to their adverse effects on cardiovascular health. Metformin monotherapy is associated with reduced macrovascular complications in overweight patients with type 2 diabetes. It is uncertain whether such improvement in the cardiovascular outcome(More)
AMP-activated protein kinase (AMPK) controls glucose uptake and glycolysis in muscle. Little is known about its role in liver glucose uptake, which is controlled by glucokinase. We report here that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), metformin, and oligomycin activated AMPK and inhibited glucose phosphorylation and glycolysis in(More)
The aim of this study was to understand by which intrahepatic mechanism metformin (Met) may inhibit basal hepatic glucose production (HGP) in type 2 diabetes. We studied rats that were fed for 6 weeks a high-fat (HF) diet, supplemented (HF-Met) or not (HF) with Met (50 mg x kg(-1) x day(-1)). Basal HGP, assessed by 3-[(3)H]glucose tracer dilution, was lower(More)
AIMS The antidiabetic drug metformin is often associated with a small reduction in total circulating cholesterol, but the mechanism responsible is unknown. As bile salts contribute significantly to cholesterol homeostasis, this study has investigated the effect of metformin on the absorption of bile salts by the jejunum and ileum, and their transfer into(More)