Nicolas Dombrowski

Learn More
In this note we consider a Landau Hamiltonian perturbed by a random magnetic potential of Anderson type. For a given number of bands, we prove the existence of both strongly localized states at the edges of the spectrum and dynamical delocalization near the center of the bands in the sense that wave packets travel at least at a given minimum speed. We(More)
We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the y-direction. As a result, the Schrödinger operator admits a direct integral(More)
  • 1