Nicolas Dejeans

Learn More
Growing evidence supports a role for the unfolded protein response (UPR) in carcinogenesis; however, the precise molecular mechanisms underlying this phenomenon remain elusive. Herein, we identified the circadian clock PER1 mRNA as a novel substrate of the endoribonuclease activity of the UPR sensor IRE1a. Analysis of the mechanism shows that IRE1a(More)
Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to(More)
Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA) ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an(More)
Hsp90 is an essential chaperone that is necessary for the folding, stability and activity of numerous proteins. In this study, we demonstrate that free radicals formed during oxidative stress conditions can cleave Hsp90. This cleavage occurs through a Fenton reaction which requires the presence of redox-active iron. As a result of the cleavage, we observed(More)
The knowledge of concentration, modification and interaction of proteins is fundamental in determining the phenotype of living organisms. Plasma, the primary clinical specimen, contains numerous and diverse proteins. The functions of these proteins are as manifold as the diversity of the protein themselves. Many of them have been largely used for many years(More)
Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study Summary Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential(More)
  • 1