Nicolas Charon

Learn More
We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely sets of surfaces that were previously segmented and labeled in a group of subjects. The method estimates an anatomical model, the template complex, that is representative of the population under study. Its shape reflects anatomical invariants within(More)
In this paper, we address the problem of orientation that naturally arises when representing shapes like curves or surfaces as currents. In the field of computational anatomy, the framework of currents has indeed proved very efficient to model a wide variety of shapes. However, in such approaches, orientation of shapes is a fundamental issue that can lead(More)
This paper introduces the concept of functional current as a mathematical framework to represent and treat functional shapes, i.e. submanifold-supported signals. It is motivated by the growing occurrence, in medical imaging and computational anatomy, of what can be described as geometrico-functional data, that is a data structure that involves a deformable(More)
We propose a novel approach for quantitative shape variability analysis in retinal optical coherence tomography images using the functional shape (fshape) framework. The fshape framework uses surface geometry together with functional measures, such as retinal layer thickness defined on the layer surface, for registration across anatomical shapes. This is(More)
One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. ABSTRACT The CLARITY method renders brains optically transparent to enable high-resolution(More)
This article introduces a full mathematical and numerical framework for treating functional shapes (or fshapes) following the landmarks of shape spaces and shape analysis. Functional shapes can be described as signal functions supported on varying geometrical supports. Analysing variability of fshapes' ensembles require the modelling and quantification of(More)
  • 1