Learn More
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography. They lead to a loss of signal in tissues of size similar to the point spread function and induce activity spillover between regions. Although PVE can be corrected for by using algorithms that provide the correct radioactivity concentration in a series of(More)
UNLABELLED PET allows the imaging of functional properties of the living tissue, whereas other modalities (CT, MRI) provide structural information at significantly higher resolution and better image quality. Constraints for injected radioactivity, technologic limitations of current instrumentation, and inherent spatial uncertainties on the decaying process(More)
During the presurgical evaluation of medically intractable epilepsy, isotopic functional imagery provides an increasing amount of data concerning the potential location of the focus. The aim of this study is to facilitate the surgical decision by presenting an image fusion method able to extract epileptogenic foci from periictal single photon emission(More)
PURPOSE Positron Emission Tomography (PET) has the unique capability of measuring brain function but its clinical potential is affected by low resolution and lack of morphological detail. Here we propose and evaluate a wavelet synergistic approach that combines functional and structural information from a number of sources (CT, MRI and anatomical(More)
Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of(More)
UNLABELLED Whole-brain activity is often chosen to quantitatively normalize peri-ictal and interictal SPECT scans before their subtraction. This use is not justified, because significant and extended modification of the cerebral blood flow can occur during a seizure. We validated and compared 2 automatic methods able to determine the optimal reference(More)
UNLABELLED The display of image fusion is well accepted as a powerful tool in visual image analysis and comparison. In clinical practice, this is a mandatory step when studying images from a dual PET/CT scanner. However, the display methods that are implemented on most workstations simply show both images side by side, in separate and synchronized windows.(More)
There is marked variability in the cerebral blood flow (CBF) between the ictal and interictal state in epilepsy, and it would therefore be desirable to increase the reliability of ictal/interictal single-photon emission tomography (SPET) difference images. We aimed to improve the step of quantitative normalization of images by finding the best possible(More)
Accurate volume contouring in PET is crucial for quantitation in numerous oncology applications. The objective of our study was to compare the performance of two algorithms for automatic lesion volume delineation that permit noise modelling and have not previously been applied to PET data; namely the Hidden Markov Chains (HMC) model and a novel version:(More)
PURPOSE Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution(More)