Nicolas Aspert

Learn More
This paper proposes an efficient method to estimate the distance between discrete 3D surfaces represented by triangular 3D meshes. The metric used is based on an approximation of the Hausdorff distance, which has been appropriately implemented in order to reduce unnecessary computations and memory usage. Results show that when compared to similar tools, a(More)
We present a procedure that compensates for phase aberrations in digital holographic microscopy by computing a polynomial phase mask directly from the hologram. The phase-mask parameters are computed automatically without knowledge of physical values such as wave vectors, focal lengths, or distances. This method enables one to reconstruct correct and(More)
This paper proposes a method to embed information into a 3D model represented by a polygonal mesh. The approach used consists in slightly changing the position of the vertices, influencing the length of approximation of the normals to the surface. This technique exhibits relatively low complexity, and offers robustness to simple geometric tranformations. In(More)
The concept of numerical parametric lenses (NPL) is introduced to achieve wavefront reconstruction in digital holography. It is shown that operations usually performed by optical components and described in ray geometrical optics, such as image shifting, magnification, and especially complete aberration compensation (phase aberrations and image distortion),(More)
In this paper, we present an original non-linear subdivision scheme suitable for univariate data, plane curves and discrete triangulated surfaces, while keeping the complexity acceptable. The proposed technique is compared to linear subdivision methods having an identical support. Numerical criteria are proposed to verify basic properties, such as(More)
In this paper we present a new method to achieve quantitative phase contrast imaging in Digital Holographic Microscopy (DHM) that allows to compensate for phase aberrations and image distortion by recording of a single reference hologram.We demonstrate that in particular cases in which the studied specimen does not have abrupt edges, the specimen's hologram(More)
  • 1