Nicolae L. Sandor

Learn More
Aging is associated with loss of muscle mass and strength, reduced satellite cell number, and lower regenerative potential. Testosterone increases muscle mass, strength, and satellite cell number in humans; however, the effects of testosterone on the regenerative potential of skeletal muscle are unclear. Here, we investigated the effect of testosterone on(More)
Men with prostate cancer who receive androgen deprivation therapy show profound skeletal muscle loss. We hypothesized that the androgen deficiency activates not only the ubiquitin-proteasome systems but also the autophagy and affects key aspects of the molecular cross talk between protein synthesis and degradation. Here, 2-month-old male mice were castrated(More)
Testosterone treatment induces erythrocytosis that could potentially affect blood viscosity and cardiovascular risk. We thus investigated the effects of testosterone administration on blood viscosity and erythrocyte deformability using mouse models. Blood viscosity, erythrocyte deformability, and hematocrits were measured in normal male and female mice, as(More)
Information Extraction methods can help discover critical knowledge buried in the vast repositories of unstructured clinical data. However, these methods are underutilized in clinical research, potentially due to the absence of free software geared towards clinicians with little technical expertise. The skills required for developing/using such software(More)
Glucocorticoids (GC) are used widely for the treatment of a large number of inflammatory conditions. A loss in muscle mass and increases in muscle weakness are common complications of GC therapy. Androgen therapy has been suggested to reverse GC-associated muscle loss (GAML), but evidence of its effectiveness is inconsistent. Herein, I established a mouse(More)
  • 1