Learn More
MOTIVATION Inferring a gene regulatory network exclusively from microarray expression profiles is a difficult but important task. The aim of this work is to compare the predictive power of some of the most popular algorithms in different conditions (like data taken at equilibrium or time courses) and on both synthetic and real microarray data. We are in(More)
BACKGROUND The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a(More)
High-throughput data production technologies, particularly 'next-generation' DNA sequencing, have ushered in widespread and disruptive changes to biomedical research. Making sense of the large datasets produced by these technologies requires sophisticated statistical and computational methods, as well as substantial computational power. This has led to an(More)
BACKGROUND Reverse-engineering gene networks from expression profiles is a difficult problem for which a multitude of techniques have been developed over the last decade. The yearly organized DREAM challenges allow for a fair evaluation and unbiased comparison of these methods. RESULTS We propose an inference algorithm that combines confidence matrices,(More)
UNLABELLED End-to-end next-generation sequencing microbiology data analysis requires a diversity of tools covering bacterial resequencing, de novo assembly, scaffolding, bacterial RNA-Seq, gene annotation and metagenomics. However, the construction of computational pipelines that use different software packages is difficult owing to a lack of(More)
The authors use ideas from graph theory in order to determine how distant is a given biological network from being monotone. On the signed graph representing the system, the minimal number of sign inconsistencies (i.e. the distance to monotonicity) is shown to be equal to the minimal number of fundamental cycles having a negative sign. Suitable operations(More)
SUMMARY SysGenSIM is a software package to simulate Systems Genetics (SG) experiments in model organisms, for the purpose of evaluating and comparing statistical and computational methods and their implementations for analyses of SG data [e.g. methods for expression quantitative trait loci (eQTL) mapping and network inference]. SysGenSIM allows the user to(More)
BACKGROUND In the past years devising methods for discovering gene regulatory mechanisms at a genome-wide level has become a fundamental topic in the field of systems biology. The aim is to infer gene-gene interactions in an increasingly sophisticated and reliable way through the continuous improvement of reverse engineering algorithms exploiting microarray(More)
Motivation: Inferring a gene regulatory network exclusively from microarray expression profiles is a difficult but important task. The aim of this work is to compare the predictive power of some of the most popular algorithms in different conditions (like data taken at equilibrium or time courses) and on both synthetic and real microarray data. We are in(More)