Nicola Origlia

Learn More
Soluble amyloid-beta (Abeta) peptide is likely to play a key role during early stages of Alzheimer's disease (AD) by perturbing synaptic function and cognitive processes. Receptor for advanced glycation end products (RAGE) has been identified as a receptor involved in Abeta-induced neuronal dysfunction. We investigated the role of neuronal RAGE in(More)
There is an increasing evidence that the Brain-Derived Neurotrophic Factor (BDNF) could be involved in the mode of action of antidepressants and, perhaps, of ECT. This study aimed to investigate whether the clinical course of medication-resistant depressed patients following a course of ECT might be associated with changes of plasma BDNF concentrations. Our(More)
Scant information is available on the diurnal variation of peripheral neurotrophic factors, including brain-derived neurotrophic factor (BDNF), in human beings. We explored plasma and serum BDNF levels at three different clock times in a study of 28 healthy subjects of both sexes. Statistically significant diurnal variation in plasma BDNF level was detected(More)
In the present report, we focused our attention on the role played by the muscarinic acetylcholine receptors (mAChRs) in different forms of long-term synaptic plasticity. Specifically, we investigated long-term potentiation (LTP) and long-term depression (LTD) expression elicited by theta-burst stimulation (TBS) and low-frequency stimulation (LFS),(More)
Genetic and biological studies provide strong support for the hypothesis that accumulation of beta amyloid peptide (Abeta) contributes to the etiology of Alzheimer's disease (AD). Growing evidence indicates that oligomeric soluble Abeta plays an important role in the development of synaptic dysfunction and the impairment of cognitive function in AD. The(More)
Overproduction of beta-amyloid (Abeta) is a pathologic feature of Alzheimer's disease, leading to cognitive impairment. Here, we investigated the impact of cell-specific receptor for advanced glycation end products (RAGE) on Abeta-induced entorhinal cortex (EC) synaptic dysfunction. We found both a transient depression of basal synaptic transmission and(More)
Oligomeric amyloid-beta (Abeta) interferes with long-term potentiation (LTP) and cognitive processes, suggesting that Abeta peptides may play a role in the neuronal dysfunction which characterizes the early stages of Alzheimer's disease (AD). Multiple lines of evidence have highlighted RAGE (receptor for advanced glycation end-products) as a receptor(More)
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition(More)
Ischemia is an inciting factor in 50% of incidences of acute renal failure, and it increases the risk of organ rejection after renal transplantation. We have previously demonstrated that resveratrol (RSV) reduces ischemia-reperfusion (I/R) injury of rat kidney both by antioxidant and anti-inflammatory mechanisms. However, a clear morphological demonstration(More)
Cyclosporine (CyA) is an immunosuppressive agent used after solid organ transplantation, but its clinical use is limited by side effects, the most important of which is nephrotoxicity. In a previous work we demonstrated that L-propionylcarnitine (L-PC), a propionyl ester of L-carnitine, is able to prevent CyA-induced acute nephrotoxicity reducing lipid(More)