Learn More
Breast cancer is a complex phenotypically diverse genetic disease, involving a variety of changes in gene expression and structure. Recent advances in molecular profiling technology have made great progress in unravelling the molecular taxonomy of breast cancer, which has shed new light on the aetiology of the disease and also heralded great potential for(More)
The discovery of microRNAs (miRNA) as novel modulators of gene expression has resulted in a rapidly expanding repertoire of molecules in this family, as reflected in the concomitant expansion of scientific literature. MiRNAs are a category of naturally occurring RNA molecules that play important regulatory roles in plants and animals by targeting mRNAs for(More)
The discovery of microRNAs (miRNAs) added an extra level of intricacy to the already complex system regulating gene expression. These single-stranded RNA molecules, 18-25 nucleotides in length, negatively regulate gene expression through translational inhibition or mRNA cleavage. The discovery that aberrant expression of specific miRNAs contributes to human(More)
BACKGROUND Gene expression analysis has many applications in cancer diagnosis, prognosis and therapeutic care. Relative quantification is the most widely adopted approach whereby quantification of gene expression is normalised relative to an endogenously expressed control (EC) gene. Central to the reliable determination of gene expression is the choice of(More)
INTRODUCTION Mi(cro)RNAs are small non-coding RNAs whose differential expression in tissue has been implicated in the development and progression of many malignancies, including prostate cancer. The discovery of miRNAs in the blood of patients with a variety of malignancies makes them an ideal, novel biomarker for prostate cancer diagnosis. The aim of this(More)
INTRODUCTION Breast cancer is a heterogeneous disease encompassing a number of phenotypically diverse tumours. Expression levels of the oestrogen, progesterone and HER2/neu receptors which characterize clinically distinct breast tumours have been shown to change during disease progression and in response to systemic therapies. Mi(cro)RNAs play critical(More)
MiRNAs are key regulators of tumorigenesis that are aberrantly expressed in the circulation and tissue of patients with cancer. The aim of this study was to determine whether miRNA dysregulation in the circulation reflected similar changes in tumour tissue. Athymic nude mice (n = 20) received either a mammary fat pad (n = 8, MFP), or subcutaneous (n = 7,(More)
BACKGROUND Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of(More)
BACKGROUND The involvement of miRNAs in the regulation of fundamental cellular functions has placed them at the fore of ongoing investigations into the processes underlying carcinogenesis. MiRNA expression patterns have been shown to be dysregulated in numerous human malignancies, including breast cancer, suggesting their probable involvement as novel(More)
Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785(More)