Nicola K. Green

Learn More
Type 5 adenovirus (Ad5) is a human pathogen that has been widely developed for therapeutic uses, with only limited success to date. We report here the novel finding that human erythrocytes present Coxsackie virus-adenovirus receptor (CAR) providing an Ad5 sequestration mechanism that protects against systemic infection. Interestingly, erythrocytes from(More)
Adenovirus is a widely used vector for cancer gene therapy because of its high infection efficiency and capacity for transgene expression in both dividing and nondividing cells. However, neutralisation of adenovirus by pre-existing antibodies can lead to inefficient delivery, and the wide tissue distribution of the coxsackie and adenovirus receptor (CAR,(More)
Systemic delivery of adenoviral vectors is a major goal in cancer gene therapy, but is currently prohibited by rapid hepatic uptake of virus following intravenous injection with levels of viable virus in the murine plasma typically falling to less than 0.1% after 30 min. We have used a surface-masking technique based on multivalent copolymers of(More)
Work using a full-length cDNA clone has revealed that the plastid-located glutamine synthetase (GS) of Phaseolus vulgaris is encoded by a single nuclear gene. Nucleotide sequencing has shown that this cDNA is more closely related to a cDNA encoding the plastidic GS of Pisum sativum than to cDNAs encoding three different cytosolic GS subunits of P. vulgaris.(More)
BACKGROUND Inefficient intracellular delivery of nucleic acids limits the therapeutic usefulness of synthetic vectors such as poly(L-lysine) (PLL)/DNA polyplexes. This article reports on the characterisation of a new type of synthetic vector based on a linear reducible polycation (RPC) that can be cleaved by the intracellular environment to facilitate(More)
The virus-directed enzyme prodrug therapy (VDEPT) anti-cancer 'gene therapy' strategy relies on the use of viral vectors for the efficient delivery to tumour cells of a 'suicide gene' encoding an enzyme which converts a non-toxic prodrug to a cytotoxic agent. The prodrug 5-(aziridin-1-yl)-2,4 dinitrobenzamide, CB1954, has been proposed for use in(More)
BACKGROUND Transductional targeting of adenovirus following systemic or regional delivery remains one of the most difficult challenges for cancer gene medicine. The numerical excess and anatomical advantage of normal (non-cancer) cells in vivo demand far greater detargeting than is necessary for studies using single cell populations in vitro, and this must(More)
Expression of genes encoding prodrug-activating enzymes can increase the susceptibility of tumor cells to prodrugs, and may ultimately achieve a better therapeutic index than conventional chemotherapy. CB1954 is a weak, monofunctional alkylating agent which can be activated by Escherichia coli nitroreductase to a potent dysfunctional alkylating agent which(More)
Effective gene therapy for disseminated metastatic cancer is currently impossible because of poor delivery of vector to target sites. Modification of viral vectors to target advanced cancer has long been a challenge. In this study, we aimed to redirect adenovirus tropism to infect prostate cancer cells via alpha6beta1 integrins, whose expression is(More)
Adenovirus gene therapy for intraperitoneal (IP) cancer is limited in clinical trials by inefficient tumor cell transduction and development of peritoneal adhesions. We have shown previously that normal virus tropism can be ablated by physically shielding the virus surface with reactive hydrophilic polymers and that linkage of novel ligands enables virus(More)