Learn More
BACKGROUND A variety of biomechanical adaptations of the knee during gait have been reported in ACL-deficient patients to cope with anteroposterior knee instability. However, strategies to prevent rotatory knee instability are less recognized. We hypothesized that ACL-deficient patients would make distinctive gait changes to prevent anterolateral rotatory(More)
This study presents a new method to estimate 3-D linear accelerations at tibial and femoral functional coordinate systems. The method combines the use of 3-D accelerometers, 3-D gyroscopes and reflective markers rigidly fixed on an exoskeleton and, a functional postural calibration method. Marker positions were tracked by a six-camera optoelectronic system(More)
The use of a treadmill to evaluate gait patterns makes it possible to analyze many gait cycles and stride to stride variations. The objective of this study was to assess the time required for a subject to habituate to walking on a treadmill. The evolution of knee kinematics and spatio-temporal parameters were analyzed to measure habituation to walking on(More)
This study assessed the influence of the medial offset of the proximal humerus on the glenohumeral destabilising forces during arm elevation in the plane of the scapula, using the AnyBody Modeling System. The variability of the medial offset was covered using literature data (minimum, 0 mm; average, 7 mm and maximum, 14 mm). The following parameters were(More)
BACKGROUND Interpreting gait data is challenging due to intersubject variability observed in the gait pattern of both normal and pathological populations. The objective of this study was to investigate the impact of using principal component analysis for grouping knee osteoarthritis (OA) patients' gait data in more homogeneous groups when studying the(More)
The aim of this work is to develop an automatic computer method to distinguish between asymptomatic (AS) and osteoarthritis (OA) knee gait patterns using 3-D ground reaction force (GRF) measurements. GRF features are first extracted from the force vector variations as a function of time and then classified by the nearest neighbor rule. We investigated two(More)
The methods used in movement analysis often rely on the definition of joint coordinate systems permitting three-dimensional (3D) kinematics. The first aim of this research project was to present a functional and postural method (FP method) to define a bone-embedded anatomical frame (BAF) on the femur and tibia, and, subsequently, a knee joint coordinate(More)
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to(More)
Soft tissue artifact (STA) distort marker-based knee kinematics measures and make them difficult to use in clinical practice. None of the current methods designed to compensate for STA is suitable, but multi-body optimization (MBO) has demonstrated encouraging results and can be improved. The goal of this study was to develop and validate the performance of(More)