Nicola Ferralis

Learn More
We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions. We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m) higher by a(More)
Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells, namely, solution(More)
Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid(More)
Nanoporous silicon (NPSi) has received significant attention for its potential to contribute to a large number of applications, but has not yet been extensively implemented because of the inability of current state-of-the-art nanofabrication techniques to achieve sufficiently small pore size, high aspect ratio, and process scalability. In this work we(More)
Recent advances in the field of two-dimensional (2D) transition metal dichalcogenide (TMD) materials have indicated that atomic layer deposition (ALD) of the metal oxide and subsequent sulfidation could offer a method for the synthesis of large area two-dimensional materials such as MoS2 with excellent layer control over the entire substrate. However,(More)
The evolution of the electronic absorption edge of type I, II and III kerogen is studied by diffuse reflectance UV–Visible absorption spectroscopy. The functional form of the electronic absorption edge for all kerogens measured is in excellent agreement with the ‘‘Urbach tail’’ phenomenology. The Urbach decay width extracted from the exponential fit within(More)
Disordered carbon materials, both amorphous and with long-range order, have been used in a variety of applications, from conductive additives and contact materials to transistors and photovoltaics. Here we show a flexible solution-based method of preparing thin films with tunable electrical properties from suspensions of ball-milled coals following(More)
The initial microscale mechanisms and materials interfacial process responsible for hydration of calcium silicates are poorly understood even in model systems. The lack of a measured microscale chemical signature has confounded understanding of growth mechanisms and kinetics for microreaction volumes. Here, we use Raman and optical spectroscopies to(More)
Mechanical degradation of lithium-ion battery (LIB) electrodes has been correlated with capacity fade and impedance growth over repeated charging and discharging. Knowledge of how the mechanical properties of materials used in LIBs are affected by electrochemical lithiation and delithiation could provide insight into design choices that mitigate mechanical(More)