Nicola Coluccelli

Learn More
We demonstrate passive mode-locking by means of a semiconductor saturable-absorber mirror in a diode-pumped Yb:YLF laser. We present crystal growth process, spectroscopic measurements, and investigation of mode-locking performance. Pulse trains with minimum duration of 196 fs, average power of 54 mW and a repetition rate of 55 MHz were obtained. The optical(More)
We developed a high-precision spectroscopic system at 8.6 μm based on direct heterodyne detection and phase-locking of a room-temperature quantum-cascade-laser against an harmonic, 250-MHz mid-IR frequency comb obtained by difference-frequency generation. The ∼30  dB signal-to-noise ratio of the detected beat-note together with the achieved closed-loop(More)
We report on the generation of mid-infrared (mid-IR) pulses with a maximum average optical power of 4 mW and wide tunability in the 8-14 μm range via difference frequency generation (DFG) in GaSe from an Er:fiber laser oscillator. The DFG process is seeded with self-frequency shifted Raman solitons that are shown to be phase coherent within the whole tuning(More)
Continuous-wave laser action of a Tm-doped GdLiF(4) (GLF) crystal pumped by a laser diode is reported at room temperature. A comparative analysis of laser performance using GLF crystals with doping concentrations of 8 at. % and 12 at. % of Tm(3+) has been carried out. A maximum output power of 1.47 W with 57% slope efficiency and a wide tunability range(More)
A compact and versatile femtosecond mid-IR source is presented, based on an optical parametric oscillator (OPO) synchronously pumped by a commercial 250-MHz Er:fiber laser. The mid-IR spectrum can be tuned in the range 2.25-2.6 μm (signal) and 4.1-4.9 μm (idler), with average power from 20 to 60 mW. At 2.5 μm a minimum pulse duration of 110 fs and a power(More)
We report on the realization of CW diode-pumped Tm:BaY(2)F(8) Q-switched laser at 1.93 microm. Active Q-switching was obtained by means of an intracavity Pockels cell. A functional characterization of the laser performance is presented with particular attention to output energy, pulse duration, pulse stability, and wavelength tunability. Pulses with time(More)
Wide-bandwidth phase lock between the tooth of a frequency comb and a CW extended-cavity diode laser at 1.55 μm is achieved by the use of an acousto-optical frequency shifter in a feed-forward configuration. The coherence properties of the comb are efficiently transferred to the CW laser, whose linewidth is narrowed down to the ∼10 KHz comb level. A maximum(More)
An integrated single-sideband modulator is used as the sole wide-bandwidth frequency actuator in a Pound-Drever-Hall locking loop. Thanks to the large modulation bandwidth, the device enables a locking range of ±75 MHz and a control bandwidth of 5 MHz without the need for a second feedback loop. As applied to the coupling of an extended-cavity diode laser(More)
We report on a narrow-linewidth distributed-feedback quantum cascade laser at 8.6 μm that is optical-feedback locked to a high-finesse V-shaped cavity. The spectral purity of the quantum cascade laser is fully characterized using a high-sensitivity optical frequency discriminator, leading to a 1 ms linewidth of less than 4 kHz and a minimum laser frequency(More)
We demonstrate a room-temperature high-power frequency comb source covering the spectral region from 2 to 2.15 μm. The source is based on a femtosecond erbium-fiber laser operating at 1.55 μm with a repetition rate of 250 MHz, wavelength-shifted up to 2.06 μm by the solitonic Raman effect, seeding a large-mode-area holmium (Ho) fiber amplifier pumped by a(More)