Nicola Bocca

Learn More
During pregnancy a high rate of beta-cell proliferation occurs, making of this a useful model for the study of islet cell expansion in vivo. We used the murine pregnancy model to assess the effect of Rapamycin treatment on islet cell proliferation in vivo. Rapamycin is routinely used for the prevention of graft rejection in transplanted patients, including(More)
We evaluated the effects of hyperbaric oxygen therapy (HOT) on autoimmune diabetes development in nonobese diabetic (NOD) mice. Animals received no treatment or daily 60-min HOT 100% oxygen (HOT-100%) at 2.0 atmospheres absolute and were monitored for diabetes onset, insulitis, infiltrating cells, immune cell function, and β-cell apoptosis and(More)
Transplantation of pancreatic islets into subcutaneous, neovascularized devices is one of the possibilities explored as part of our search for a cure of diabetes. We have recently reported that syngeneic transplantation in a subcutaneous prevascularized device can restore euglycemia and sustain long-term function in rats and that explanted grafts showed(More)
BACKGROUND Progressive graft dysfunction is commonly observed in recipients of islet allografts treated with high doses of rapamycin. This study aimed at evaluating the effect of rapamycin on pancreatic islet cell proliferation in vivo. METHODS The murine pregnancy model was utilized, since a high rate of beta-cell proliferation occurs in a well-defined(More)
The aim of this study was to explore the effect of sirolimus (Sir) and tacrolimus (Tac) on islets implanted into a subcutaneous (SC), prevascularized device in syngeneic rats. Animals received a 40-day treatment with Tac and Sir (alone or in combination) starting either on day 0 or 40 days after islet transplantation. Controls received no treatment. A(More)
Riboflavin is a water-soluble vitamin that reduces the production of proinflammatory mediators and oxygen radicals. Because islet beta-cells are very sensitive to oxidative stress and to cytokines, we investigated the possible cytoprotective effects of riboflavin on insulinoma NIT-1 cells and on isolated rodent islets. NIT-1 cells and islets cultured in the(More)
Emerging biotechnologies, such as the use of biohybrid devices for cellular therapies, are showing increasing therapeutic promise for the treatment of various diseases, including type 1 diabetes mellitus. The functionality of such devices could be greatly enhanced if successful localized immunosuppression regimens could be established, since they would(More)
  • 1