Learn More
The transcriptional antiterminator RfaH promotes transcription of long operons encoding surface cell components important for the virulence of Escherichiacoli pathogens. In this paper, we show that RfaH enhanced kps expression for the synthesis of group 2 polysialic acid capsule in E. coli K92. In addition, we demonstrate for the first time that RfaH(More)
Evolution of hematophagy in blood-sucking parasites likely involves communication with their hosts. We find that Ixodes ticks are responsive to IFNγ acquired in a blood meal from mice infected with the Lyme disease-causing bacteria Borrelia burgdorferi, leading to induction of antimicrobial responses. Ixodes ticks parasitizing B. burgdorferi-infected mice(More)
Escherichia coli K92 is an opportunistic pathogen bacterium able to produce polysialic acid (PA) capsules when grows at 37 degrees C. PA polysaccharides are cell-associated homopolymers tailored from acid sialic monomers that function as virulence factors in different neuroinvasive diseases caused by certain Enterobacteriaceae. Conversely, when grows at 19(More)
We have shown previously that Escherichia coli K92 produces two different capsular polymers known as CA (colanic acid) and PA (polysialic acid) in a thermoregulated manner. The complex Rcs phosphorelay is largely related to the regulation of CA synthesis. Through deletion of rscA and rscB genes, we show that the Rcs system is involved in the regulation of(More)
Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has(More)
We studied growth temperature as a factor controlling the expression of genes involved in capsular polymers of Escherichia coli K92. These genes are shown to be regulated by growth temperature. Expression levels of genes belonging to the kps cluster, responsible for polysialic acid (PA) biosynthesis, were significantly increased at 37 °C compared with at 19(More)
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is a poorly understood process, despite its importance during the host immune response to infection. B. burgdorferi has been shown to bind to different receptors on the surface of phagocytic cells, including the β(2) integrin, complement receptor 3 (CR3). However, whether these(More)
Mitochondria are the main engine that generates ATP through oxidative phosphorylation within the respiratory chain. Mitochondrial respiration is regulated according to the metabolic needs of cells and can be modulated in response to metabolic changes. Little is known about the mechanisms that regulate this process. Here, we identify MCJ/DnaJC15 as a(More)
A group of synthetic antimicrobial oligomers, inspired by naturally occurring antimicrobial peptides, were analyzed for the ability to modulate innate immune responses to Toll-like receptor (TLR) ligands. These synthetic mimics of antimicrobial peptides (SMAMPs) specifically reduced cytokine production in response to Staphylococcus aureus and the S. aureus(More)
The interaction of macrophages with infectious agents leads to the activation of several signaling cascades, including mitogen-activated protein (MAP) kinases, such as p38. We now demonstrate that p38 MAP kinase-mediated responses are critical components to the immune response to Borrelia burgdorferi. The pharmacological and genetic inhibition of p38 MAP(More)