Nicolás José Lavagnino

Learn More
Odour-guided behaviour is a quantitative trait determined by many genes that are sensitive to gene-environment interactions. Different natural populations are likely to experience different selection pressures on the genetic underpinnings of chemosensory behaviour. However, few studies have reported comparisons of the quantitative genetic basis of olfactory(More)
BACKGROUND Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit(More)
Developmental conservation among related species is a common generalization known as von Baer's third law and implies that early stages of development are the most refractory to change. The "hourglass model" is an alternative view that proposes that middle stages are the most constrained during development. To investigate this issue, we undertook a genomic(More)
Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of(More)
In the holometabolous insect Drosophila melanogaster, genetic, physiological and anatomical aspects of olfaction are well known in the adult stage, while larval stages olfactory behavior has received some attention it has been less studied than its adult counterpart. Most of these studies focus on olfactory receptor (Or) genes that produce peripheral odor(More)
BACKGROUND Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect(More)
  • 1